Termination of the following Term Rewriting System could be disproven:
Generalized rewrite system (where rules with free variables on rhs are allowed):
The TRS R consists of the following rules:
and(tt) → X
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → U12(isNeList)
U12(tt) → tt
U21(tt) → U22(isList)
U22(tt) → U23(isList)
U23(tt) → tt
U31(tt) → U32(isQid)
U32(tt) → tt
U41(tt) → U42(isList)
U42(tt) → U43(isNeList)
U43(tt) → tt
U51(tt) → U52(isNeList)
U52(tt) → U53(isList)
U53(tt) → tt
U61(tt) → U62(isQid)
U62(tt) → tt
U71(tt) → U72(isNePal)
U72(tt) → tt
isList → U11(isPalListKind)
isList → tt
isList → U21(and(isPalListKind))
isNeList → U31(isPalListKind)
isNeList → U41(and(isPalListKind))
isNeList → U51(and(isPalListKind))
isNePal → U61(isPalListKind)
isNePal → and(and(isQid))
isPal → U71(isPalListKind)
isPal → tt
isPalListKind → tt
isPalListKind → and(isPalListKind)
isQid → tt
↳ GTRS
↳ CritRuleProof
Generalized rewrite system (where rules with free variables on rhs are allowed):
The TRS R consists of the following rules:
and(tt) → X
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → U12(isNeList)
U12(tt) → tt
U21(tt) → U22(isList)
U22(tt) → U23(isList)
U23(tt) → tt
U31(tt) → U32(isQid)
U32(tt) → tt
U41(tt) → U42(isList)
U42(tt) → U43(isNeList)
U43(tt) → tt
U51(tt) → U52(isNeList)
U52(tt) → U53(isList)
U53(tt) → tt
U61(tt) → U62(isQid)
U62(tt) → tt
U71(tt) → U72(isNePal)
U72(tt) → tt
isList → U11(isPalListKind)
isList → tt
isList → U21(and(isPalListKind))
isNeList → U31(isPalListKind)
isNeList → U41(and(isPalListKind))
isNeList → U51(and(isPalListKind))
isNePal → U61(isPalListKind)
isNePal → and(and(isQid))
isPal → U71(isPalListKind)
isPal → tt
isPalListKind → tt
isPalListKind → and(isPalListKind)
isQid → tt
The rule and(tt) → X contains free variables in its right-hand side. Hence the TRS is not-terminating.